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We show how the theory of anelasticity unifies the observed dynamics and proposed models of
administered-rate products. This theory yields a siraightforward approach to rate model construction that we
illustrate by simulating the observed relaxation dynamics of two administered rate products. We also demon-
strate how the use of this formalism leads to a natural definition of market friction.
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L INTRODUCTION

Administered-rate products represent a substantial frac-
tion of the liabilities of banks and savings and loans' and the
ability to describe the response of these products to changes
in market rates is of critical importance for interest-rate risk
rn;.rnn;sllgv::mvant,1 Unlike market rates (e.g., US. Treasury
bonds) that are set in an auction environment or contractual
rates that respond instantanecusly to market rates in a pre-
scribed manner (e.g., home mortgages), administered rates
{e.g., interest rates on checking and savings accounts) are set
by a committee seeking an equilibrium rate in response to
changes in market rates. Factors that bear on this equilibrium
pricing include expected fumre market rates, competitor
pricing responses, and depositor’s short-term and long-term
balance elasticities (i.e.. propensity to change balance levels
in response to rate changes); all of which are known with
limited certainty. Balance elasticities are exceedingly diffi-
cult to estimate with any reliability because banks usually do
not preserve much historical data and do not usually employ
the resources needed to evaluate the data that does exist
Consequently, these committees indicate a certain amount of
inertia.

The general proclivity of pricing committees to leave well
enough alone has been found in a variety of empirical studies
[3-9] that have established that administered rates are driven

"Mays [1] notes that nommaturity deposits—a class of
administered-rate products—comprise **42% of total bank liabili-
tes and over 25% of savings and loan (S&L) liabilities as of De-
cember 1995.°"

2As pointed out by Mays [1] and OBrien er al. [2] the present
value PV of administered-rate nonmaturity deposits can be est-
mated using the equation

S, Dy~
PV=Do B G

where [, is the deposit balance at time ¢, r'™' is the market rate, r'*'

is the administered deposit rate, and ¢ denotes the noninterest
charges associated with maintaining the account. Clearly there is
interest rate sensitivity in the present value: explicitly in the appear-
ance of the market rate in Eq. (1} and implicitly in both the sensi-
tivity of the balances and the administered deposit rate to changes
in the market rate.

. (1.1}
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by market rates and that the response of an administered rate
to the market rate is not instantaneous. This behavior has
been modeled by a number of investigators [1,2,8—-13] who
have settled largely on the use of partial adjustment models’
to describe the noninstantanecus response of administered
rates to changes in market rates. While these models often
adequately describe the observed administered-rate behavior,
they largely lack a theoretical basis with which to interpret
the resulting parameters and with which to link rate policy to
the rate model. In this paper we show that the formal as-
sumptions upon which previous treatments of administered-
rate dynamics are based are identical to the assumptions un-
derlying the formal treatment of a vadety of relaxation
processes in condensed-matter physics including magnetic,
dielectric, and anelastic relaxations [15]. All these physical
phenomena involve time-dependent relaxations toward
newly established equilibria that follow from a change in a
driving force and can be described in terms of linear-
response theory, Since these physical phenomena share a
common mathematical description of relaxation/response
and since these physical phenomena and administered-rate
dynamics share a variety of underlying assumptions, we
make the ansaiz that these phenomena all share a common
mathematical description. Given this we can move beyond
an ad hoc treatment of administered-rate dynamics and em-
plov the phenomenological models that have been developed
to model these physical relaxation processes to model the
dynamics of administered-rate deposits.

The theory of anelasticity provides a useful framework
with which to develop our treatment of administered-rate
dynamics because of the similarity between some of the
equations that have appeared in the literature on adminis-
tered rates and the scalar representation of anelasticity. We
show in Sec. II how the theory of anelasticity can be used to
develop a hierarchy of continuous-time models of the
administered-rate response function that include, as a subset,
the partial adjustment models that have appeared in the lit-
erature. We find that the continuous-time models that follow
from this approach lend themselves to an easy mapping be-
tween certain aspects of rate policy and of model structure.

*See, for example, Chap. 9 of Kennedy [14] for a discussion of
partial adjustment models in econometrics.
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We illustrate the utility of this approach in Sec. III by mod-
eling the rate-response behavior for two administered-rate
products: money market accounts and time deposits. In Sec.
IV we explore the notion of dissipation embodied in these
relaxation dynamics to develop a formal notion of market
friction.

II. RATE DYNAMICS
A. Assumptions and econometric models

Fundamental to essentially all descriptions of
administered-rate product rates is the notion that there exists
an equilibrium relationship between the product rate 7'’ and
the market rate r'™ that is of the form

rPl=c+Jrm, (2.1)
where the tilde indicates equilibrium. The constant ¢ is often
taken to denote the costs to the bank of servicing the product.
The proportionality factor J has, in the case of nonmaturity
deposits, been interpreted as the fraction of deposited monies
that Federal Reserve requirements allow to be lent [2,16.17].
The intuition behind this equilibrium relationship, as pointed
out by O"Brien et al. [2], is *“that if a bank offered to pay the
market rate on an account the bank would lose money for
two reasons. First, due to Federal Reserve requirements, the
bank cannot reinvest and eam interest on all of a deposit, but
only on the fraction J of the account; where J equals one
minus the marginal reserve requirement. But even the de-
posit rate Jr'™' loses money for the bank since the bank must
cover its costs of servicing the account.”” Thus, ¢ is added to
Jr'™ and we obtain Eq. (2.1). While the interpretation of J
in terms of a Federal Reserve requirement clearly breaks
down for products without such a requirement, Eq. (2.1) re-
mains, nevertheless, a basic assumption of equilibdium be-
havior for most administered-rate products [1.2,8-13].

The rate relationship in Eq. (2.1) is characterized by three
features: (i} a unique equilibrium product rate for each level
of the market rate, (i1} instantaneous achievement of the
equilibrium response, and (iii) linearity of the response. We
note in passing that the equilibrium rate is completely recov-
erable.

The empirical dynamics of administered rates, however,
demonstrate that the equilibrium response is not achieved
instantaneously and a lagged response is observed [3-9]. To
incorporate this observed lag into the relationship between
the product rate and the market rate, previous research has
augmented Eq. (2.1) with an ad hoc *‘partial adjustment’”
model of the form

Jf‘p] _E [ﬂ‘r”’” +b r::‘!pbj+| ‘2-2}

where we have introduced the tlme—dependem notation r'"
=p"Y¢ ), This functional form is the basis of most of Ihe
econometric studies that have appeared in the literature to
date [1,2.8-13]. While some researchers have posited that
the coefficients in Eq. (2.2) depend on the direction of the
change in the market rate, O'Brien [13] has recently pointed
out, however, that such an assumption is not consistent with
the assumed equilibrium relationship given in Eq. (2.1).
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E. Anelastic rate dynamics

The theory of anelasticity is a generalization of the theory
of ideal elasticity that allows for time dependence in the
response of a material to an applied stress. Like previous
treatments of administered-rate dynamics it assumes the ex-
istence of a unique equilibrium relationship between stress
and strain known as Hooke's law. The equilibrium relation-
ship given in Eq. (2.1) is, in fact, identical to the scalar
version of Hooke’s law of ideal elasticity e=Jo with the
product rate playing the role* of strain e and the market rate
playing the role of stress . In this context the constant ¢
can be interpreted as the contribution to the product rate
driven by a different *‘stress’": the cost to the bank of main-
taining the account.”

The differential dynamics of anelasticity are not obtained
through a direct application of lagged variables via Eq. (2.2)
but, rather, by noting that the assumption of linearity implies
a general market-product rate relationship of the form

:.'F
(fﬂ+fld +f1n*2 ")"EN

2 !
d ”.)riml_

d
=(g“+g]d—r‘ +SEE;§ ‘2.3}

While the econometric application of this equation, like Eq.
(2.2}, requires an analysis of the number of terms needed to
describe the observed dynamics, the use of Eq. (2.3) enables
an economic interpretation of these terms and the coeffi-
cients. In practice a wide range of relaxation dynamics have
been found to be described well by the comparatively simple
differential relationship’

dr'?! drim™
o + ?}{r{m—c}=1[:—dr—- + pd gr'™

(2.4

where 7 denotes the rate at which the product rate relaxes to
the equilibrium level, J;; denotes that fraction of the re-
sponse that occurs instantaneously, and J; denotes the ulti-

*“While the notions of strain, stress, and force are also used as
metaphors in economics and finance, our use of these metaphors
used here is to motivate the comparison of notation.

A more complete comespondence with scalar elasticity can be
achieved by positing that market rates change in response to market
stress '™ induced by market forces. To the extent that market
rates respond to market forces in an essentially instantaneous man-
ner, we can write r'™'={K/J1e'"™ from which it follows that r'*'
=¢+ Ko'™: Hooke's law relating the product rate to the market
stress via the compliance K.

*We thank Leif Wennerberg for this observation.

"Indeed. this relationship is so ubiquitous that the resulting ane-
lastic system is referred to as the “‘standard anelastic solid™” [18].
Higher-order differential equations can be used to treat more com-
plex relaxation processes. Nowick and Berry [18] show, however,
that these higher-order differential processes can be represented as a
linear combination of the standard anelastic solid. The interest rate
dynamics discussed in this paper are described gquite adequately
with the standard anelastic differential equation given above.
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FIG. 1. The response of the product rate to a step change in the
market rate given by Eq. (2.4).

mate extent of the response function [=J(r=2=)]. The
change in the product rate with respect to time is, in this
case, a function of the current product rate, the current mar-
ket rate, and the change in the market rate with respect to
time.

Some intition for the interpretation of this differential
product-market rate relationship can be obtained for the case
of a simple market rate shock. Given a sudden change in the
market rate, that is subsequently held constant at '™, and
the equilibrium relationship given by Eq. (2.1}, Eq. (2.4) can
be integrated to yield the time-dependent product rate

rP()=c+ Tyt 8l[1—e”"Pr™,  (2.5)
where &f=[J.—J,], whence
J[’f}:J’Uﬂ- M[.I "'e_m]; {2'6}

illustrating the decomposition of the response J into an in-
stantanecus contribution J,, and a time-dependent portion
proportional o & mentioned above. The product-rate re-
sponse to this step change in the market rate is illustrated in
Fig. | where we show the response of the product rate to a
step change in the market rate with ¢=0.25, J,;=0.375,
87=0.5, and 5= 1.0. The product rate tracks the market rate
instantaneously over a range defined by J;: in this case to
1.0, The product rate then relaxes to equilibrium with the
market rate (in this example ##'=0.25+0.875-'"""). Vary-
ing Sy and Jg (or, equivalently &7) one can span the range
of responses from being completely instantaneous, J,=Jg
=0, to being completely time dependent, J;,=0.

C. Anelastic partial adjustment models

A variety of partial adjusiment models can be developed
for the differential relationship given above by discretizing®
the integral form of dr'7/d¢ given in Egs. (2.4):

f"p'“}=r},‘w+Jrﬂr'P’{T}.f'{m}{T},t‘]d?’. (2.7)

bgee, for example, Chap. 1 of Koonin [19] or Section 16.7 of
Press er al. [20].
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which is known to yield

rie) —r“"+f:2 F: & o (2.8)

where f represents all terms in Eq. (2.4) except for dr'?/dt
and h is the time step. This expression is essentially identical
to the partial adjustment formula given in Eq. (2.2) above.
Using standard discretization techniques one can derive sev-
eral partial adjustment models from Eq. (2.4) appropriate for
more complex behaviors of the driving market rate. We now
explore some common discretizations of our standard anelas-
tic system that resemble closely the parial adjustment for-
mulas that have appeared in the literature.

Rewriting Eq. (2.4) in terms of the variable y=r"
—J '™ we begin with the forward-difference Euler equa-
tion v, =v,+f, from which it follows that

{PJ = m+rffpl+jﬂ{rm}l_

Fa+1

)+ =),
(2.9)

We note that when #/,=.J, this relationship becomes

r2 = e (1 prP+ 1yl (2.10)
which is identical in structure to the simplest partial adjust-
ment model discussed by Mays [1].

While the Euler discretization of Eq. (2.4) yields a popu-
lar partial adjustment expression, partial adjustment models
with more temporal lags do exist in the literature on
administered-rate products. More temporal lags can be intro-
duced in two different ways. First, if the deliberations of the
pricing committee are known to correspond to Eg. (2.4) (ie.,
the product rate is based on considerations of the level and
change of the rates) then partial adjustment models can be
obtained wsing different discretization techniques. Alterna-
tively, greater temporal lags follow naturally if the delibera-
tions of the committee include the change in the slope of the
market and product rates as a function of time. We examine
each in turn.

Partial adjustment models, based on Eq. (2.4), with
greater temporal lags, can be obtained through higher-order
discretizations such as the Adams-Bashford methods. The
Adams-Bashford two-step method is given by v,., =¥,

+[2f,—Lf.—1]. Applying this to Eq. (2.4) yields
P8 = me+rP I (i — i)+ 3 (T pri™ — ri)
— b plTeri? —r ), (2.11)

which shares many structural aspects with the partial adjust-
ment model developed by the Office of Thrift Supervision
(OTS) [11]. Further temporal lags can be included by apply-
ing the Adams-Bashford three-step method v, ,=v,
+ %[23.{”_ 16f,—1+5fy-2] to Eq. (2.4):

E‘p_:l =nc+ r[r”'i'-f{,["m'l - tmr}+ x ] ??{JRJ‘(“.—FUJ]}

—ﬁi?{jnr{”lr ”“ ::|+ 1z ?j{fgrf,m]z—r:f_:'u),

n—1
(2.12})
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If the product rate is thought also to be a function of the
change in the slope of the market and product rates as a
function of time, it is likely that the dynamics are better
represented by the relationship involving two relaxations

dErIF' i dr[f-‘]‘
0 eyl gt g g (e o]
dlrinﬂ
=ty +[5J:“T}{”+5ﬂh?}ﬂ]+{T]“]‘l‘f;'n:}.fu]

dr*

L]

» + 7?11}??(3!{5_;“]_; "5-’[1}"'-;{,?]"{1"]- (2.13)

di

which is simply Eq. (2.3) with up to second-order derivatives
included and where %'’ and &J'" correspond to the ith re-
laxation. While somewhat more formidable than Eqg. (2.4),
given this choice of terms and coefficients, the associated
response function is known [18] to be a simple sum of the
responses resulting in a generalization of Eg. (2.6) to

3

H=Ty+2 &1'1—e7"7], (2.14)
' |

where we see that the response function now contains two
relaxation response terms in addition to the instantaneous
response.

The partial adjustment model that follows from an Euler
discretization of Eq. (2.13) yields, via the second derivatives,
a function of the form

12 ) iry _(p) (m) _(m) _{m)
=nc+r+h(rl r gL P

A=1r a—1

(2.15)

ipy
Fa+1

While this expression contains the same number of temporal
lags as Eq. (2.11) and has a structure similar to that of the
OTS model [11], it has two more degrees of freedom than
Eg. (2.11) due to the more complex relaxation process.

The anelastic partial adjustment models differ from the
partial adjustment models that have appeared in the literature
in two important ways. First, the number of free parameters
is determined by the nawre of the differential rate relation-
ship, while the number of terms is determined independently
by the nature of the discretization of the differential rate
relationship. Second, the decoupling of the number of terms
from the number of free parameters in the partial adjustment
madel allows the partial adjustment model to better reflect
the nature of how the pricing committees adjust rates in re-
sponse to market rates. While the differential rate relation-
ship provides a phenomenological representation of the ob-
served lag in the product-rate adjustment, the discrete form
of the model can be expressed so as to reflect the number of
previous time periods included in the deliberations of the
pricing committee. Thus, the anelastic approach provides a
convenient way to avoid overspecification of the relationship
between the product and market rates while simultaneously
providing the flexibility needed to properly represent the data
used in rate policy decisions.
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FIG. 2. The market rate (three-month LIBOR), observed CMX
rate, and calculated CMX rate as a function of time.

. Simulation using Boltzrmann superposition

Having demonstrated that the functional form of the par-
tial adjustment models that have appeared in the literature
can be recovered from the anelastic formalism using standard
discretization techniques, we note in passing that there is a
far simpler approach to the modeling of these rate dynamics
that may be of use in future work. As pointed out by Nowick
and Berry [18] manipulation (and discretization) of the dif-
ferential product-market rate equations becomes increasingly
complex as the order of these equations increase. An appro-
priately chosen manner of increasing the order of the differ-
ential equation [employed, for example, in Eq. (2.13)] allows
us to write down the response function [cf. Eqs. (2.6) and
(2.14)] directly as

N
=T+, &'1=e"""), (2.16)
i=1

where N represenis both the order of the differential terms
included in Eq. (2.3) and the number of relaxation terms.
Then, as a consequence of the linearity of the system—also
known as the Boltzmann superposition principle—we can,
given a history of market rate changes \™' applied at suc-
cessively increasing times 7,75, ...,Ty, Wwrite the product
rate as

o

rP()—e=2 A" I(t—1). (2.17)
i=1

These simple relations provide a straightforward calculation
of the product rate in response to changes in the market rate
with a response function that is specified casily in terms of
two types of coefficients: a relaxation rate and the fraction of
the response corresponding to that rate.

While by no means an exhaustive collection of the models
that can be generated from Eqs. (2.1) and (2.3}, Egs. (2.9),
(2.10), (2.11), (2.12), and (2.16} illustrate, nevertheless, the
rich vaniety of partial adjustment models that follow from a
single linear differential relationship between the product
and market rates that, in tumn, follows from an anelastic in-
terpretation of the relationship between the product and mar-
ket rates. We now apply the anelastic approach to the de-
scription of the observed dynamics of administered rates.
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TABLE 1. Fitted results for the (i) Euler forward difference
(Euler FD), (i) Adams-Bashford two-step { Adams-Bashford 2), and
(iii) Adams-Bashford three-step (Adams-Bashford 3) discretized
forms of the anelastic model for the CMX rate.

Euler FDO  Adams-Bashford 2 Adams-Bashford 3
c —2.8544 —2.7653 —2.7006
Jyr 0.2033 0.2690 0.2633
o 1.0060 0.9938 0.9854
7 0.0430 0.0452 0.0464
R? 0.9741 0.9746 0.9745

IIL. ANELASTIC RELAXATIONS AND OBSERVED
PRODUCT-RATE DYNAMICS

We have used the anelastic approach described above to
model the dynamics of the Cash Maximizer™ (CMX) inter-
est rates [21] and of the rates for retail certificates of deposit
(CD’s). The Cash Maximizer™ account is a money market
deposit account that requires a minimum of USD 2500 to
open and to avoid service charges.” Unlike the CMX product
that has no defined maturity. the retail CD, used in this study,
has a three-month maturity.'” The CD that we shall analyze
below has a face value of USD 2500. The CD and CMX
rates are set by committee.

The market rate driving changes in the CMX rates is
taken to be that rate most closely matching a matched rate
along the bank’s cost-of-funds curve. Since the marginal cost
of funds for Bank of America during this period is best re-
flected by the London Interbank Offer Rate (LIBOR) for
short maturities, we have taken the three-month LIBOR to be
the market rate.

The month-end CMX rates are shown together with the
three-month LIBOR for the period March 1983-February
1997 in Fig. 2. Comparing these rates we see that the CMX
rate is always less than the three-month LIBOR and that the
CMX rate roughly tracks the movements of the three-month
LIBOR in a largely attenuated and somewhat lagged manner.
We fit Egs. (2.9), (2.11), and (2.12) to these data using the
generalized reduced gradient (GRG2) nonlinear optimization
solver in Microsoft Excel™. The coefficients resulting from
these fits are given in Table I together with the coefficient of
determination R*= 1 — SSE/SST, where SSE is the error sum
of squares and S5T is the total sum of squares. The fit of Eqg.
(2.9) is shown together with the CMX rates and the three-

“In July 1986, Bank of America introduced USD 25 000 and USD
100 000 tiers to this account. While the introduction of these tiers
did introduce some additional pricing constraints (e.g., higher-
minimum tiers have rates greater than or equal to lower-minimum
tiers) the dynamics of each tier is otherwise considered to be inde-
pendent of the other tiers.

1"Retail customers of Bank of America could, during the period to
be analyzed, select almost any maturity less than 7 years, Most
customers chose the conventional maturities of 3 months, 6 months,
or annual increments out o 7 years.
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FIG. 3. The market rate (three-month LIBOR), observed CD
rate, and calculated CI) rate as a function of time,

month LIBOR rates in Fig. 2: the other fits are not shown, as
differences among them cannot be resolved by eye on this
scale.

An identical analysis was performed on the month-end
CD rates shown, together with the three-month LIBOR for
the period October 1983—February 1997, in Fig. 3. The re-
sults of the fitting described above are shown in Table [I.
The fit of Eq. (2.9) is shown together with the CD rates and
three-month LIBOR in Fig. 3. As in the case of Fig. 2, dif-
ferences among the various fits cannot be meaningfully re-
solved by eye on this scale.

We see in Figs. 2 and 3 that modeling changes in these
product (CMX, CD) rates, as an anelastic response to a mar-
ket rate, changes results in an expression [e.g., Eq. (2.9)] that
can track the observed product rate quite well. This is re-
markable given that these two products have quite different
maturity assumptions: the CD has a fixed maturity while the
CMX product has no mamrity. These results, together with
the observation made above that economic assumptions con-
cerning the relationship between the market and product
rates are the same as those of an anelastic process, provide
compelling evidence that these product rates respond to mar-
ket rates as if via anelastic relaxations.

IV. RELAXATIONS AND MARKET FRICTION

In a mechanical system the time-dependent stress-strain
behavior 15 “*an external manifestation of internal relaxation

TABLE 1I. Fitted results for the (i) Euvler forward difference
{Euler FD), (ii) Adams-Bashford two-step (Adams-Bashford 2), and
{ili) Adams-Bashford three-step {Adams-Bashford 3) discretized
forms of the anelastic model for the CD rate.

Euler FD  Adams-Bashford 2  Adams-Bashford 3
¢ — 1.1967 —1.2097 —13271
7 0.3255 0.2932 0.3331
Ip 0.9289 0.9307 0.9493
7 0.1275 0.1332 0.1228
R 0.9839 0.9840 0.9840
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behavior that arises from a coupling between stress and
strain through internal variables that change to new equilib-
rium values only through kinetic processes such as diffu-
sion”* [18] Similarly, time-dependent market-administered
rate behavior is an external manifestation of internal relax-
ation behavior that arises from a coupling between the mar-
ket and product rates through internal variables such as com-
petitor pricing responses and depositor’s balance elasticities
that change to new eguilibrium values only after the passage
of time. In both mechanical and market systems this tempo-
ral lag in response to an applied force is a manifestation of
friction,

Our identification of administered-rate dynamics as relax-
ations also provides a way of quantifying market friction. An
expression for this dissipation—also known as *‘internal fric-
tion™” in the anelasticity literature—can be obtained by con-
sidering the case of a periodic market scalar stress o™ (1)
due to a periodic market force

U[m?{;):almliﬂ}er’wr’ {4_”
where ™'(0) is the market stress at time =0, i= \."—_].
and w is the cyclic frequency of the market stress. The prod-
uct rate will track the market force (and market rate, due to
linearity as discussed above) with a lag that can be repre-
sented by a loss angle ¢:

rP) ) =r'P0)e! . (4.2)
These expressions for the market and product rates imply a
frequency dependent proportionality factor J{w) [the Fourier
transform of J(t)] that is complex J{w)=J (w)=if:(w)
and a loss angle related to the components of J{w) by
tan{ ¢¢) =J5(w)/J | (w).

The isomorphism between anelasticity and administered
rates implies the existence of a state variable—a market
equivalent of energy—at any phase in the market cycle given
by [o'™drPlee [rimdr'?) taken between the start of the
cycle up to the point of interest. The market energy dissi-
pated in a full market cycle is

All= § G“m'd!‘[m‘x'IT..fg[r":"”{{]}]:,, Mj}
and the stored market energy is
mi2 1 o
U=J- o™ drPe =1 [F"N0)]". (4.4)
=11 2

The ratio of these terms—the fractional market energy dissi-
pated in a full market cycle—is related to the loss angle ¢ by
AU/ =21 tan( ¢») which, for the administered rates de-
scribed by Eq. (2.4) vields

wf 7

T (4.5)
‘JR+ J’U'l'.ﬂ"ﬂr ??"'

tan ¢h=4J

Thus we see that the existence of an anelastic response (&S
#0) in a market system implies a dissipation of market en-
ergy and a formal definition of market friction. As the exis-
tence of this loss angle is due to the gathering and processing
of information needed to reestablish equilibrium—r'?’
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FIG. 4. The loss curves for CMX and CD rates.

—PP it follows that the loss angle is also a measure of
relative efficiency discussed by Farmer and Lo [22]. This is
illustrated in Fig. 4 where we see the loss angle as a function
of cyclic frequency w for both the CMX and CD rates. In the
limit w—0, the market cycle becomes so long that any finite
relaxation rate is, on the time scale of a market cycle, instan-
taneous and the rate systems behave as if there is no relax-
ation with J(¢)=Jz. In the limit w—, the market cycle
becomes so short that the only component of the system that
responds to the market force is the instantanecus portion Jy.
Between these extremes we see the loss due to the relaxation
behavior. For w=0.16 cycles per month (cycles greater than
about 6 months) the CMX rate loss is greater than that of the
CD. This is consistent with our expectation that the rate sys-
tem that relaxes faster requires less market energy to achieve
equilibrium and is, therefore, less lossy and more efficient.
For w=0.16 (cycles less than about 6 months) the CD rate
has a greater fractional loss per cycle. This perhaps unex-
pected result follows from the relative relaxation rates of
these two systems. As the cyclic frequency increases, the
relaxation component begins to “‘freeze out”” and the system
behaves in an increasingly elastic manner with J{¢)—J.
Since the CD rate relaxes faster than the CMX rate, the re-
laxation component of the CMX rate “‘freezes out™ first
making it less lossy than the CD rate in this frequency range.

V. DISCUSSION AND SUMMARY

Administered rates are unique in that they are set by a
group of individuals attempting to maximize profits in the
face of market forces. As the future direction of market
forces, commonly measured by market rates, is unknown and
committee decisions exhibit a degree of inertia, equilibrium
between the market force and administered rate is achieved
only after the passage of a certain amount of time. Histori-
cally this process has been formally expressed by an as-
sumed linear equilibrium relationship and an ad hoc partial
adjustment model to describe the change of the administered
rate in response to a change in the market rate. Common to
most previous treatments of administered-rate dynamics are
the postulates that (i} for every market rate there is a unique
equilibrium rate, and vice versa, (ii) the equilibrium response
is achieved only after the passage of sufficient time, and (iii)
the market-administered-rate relationship is linear. A contri-
bution of this paper is the observation that these postulates
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also form the basis for a well-developed theory of relaxation
processes in the physical sciences: indeed, these postulates
are paraphrased directly from the introduction to anelasticity
presented by Nowick and Berry [18]. We have examined this
market system and found that the assumed equilibrium rate
relationship corresponds to Hooke’s law of elasticity and that
the relaxation dynamics of administered rates are quite simi-
lar to anelastic relaxations. Developing this isomorphism we
demonstrated that the basic structure of popular ad hoc par-
tial adjustment models could be reproduced easily. using
standard techniques for discretizing the simplest anelastic
differential relationship between the admimistered rate and
market rate. We applied these models to the observed inter-
est rate dynamics of a Cash Maximizer™ account and a
certificate of deposit and found that, in spite of significant
differences in the maturity features of these products, their
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dynamics are described well as anelastic relaxations. Finally
we found that the anelastic description of these dynamics
provides a natural definition of market friction as the realiza-
tion of internal friction or dissipation in this market system.
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