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Using AFT and FSI Tools to Validate Components of 
Interest Rate Risk Models 
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Agenda 

 Validation Tests of Prepayment Models  
 
• Models applicable to securities 

• Models applicable to portfolio loans 

 Validation Tests of Stochastic Rate Generators using FSI 

• Lattice 

• Monte Carlo 
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Regressor and Back-testing 

 Regressor is applicable to AFT prepayment models: 
 

• Securities 

o MBS 

o CMOs 

 MBS data at the CUSIP level require extraction routines from 
Bloomberg or Intex. 

 CMO data at the CUSIP level require license with Intex, Chasen or 
other cash flow model vendor.   

 Agency CMO data can be extracted from Bloomberg. 
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 Batch  “Back-test” in the Regressor Model 

• Output created: 

o Actual CPR 

o AFT forecast of CPR using actual rates 

• Output is written to text files with number of files equal 
to the number of collateral types.   

o Example: 300 CUSIPs of 15 and 30 FNMA, FHMLC, and 
Whole loans might reside in six text files 

• All CUSIPs can be run at once in Regressor with the 
text files created automatically. 

• Text files can be opened in EXCEL and standard 
“goodness of fit” or other statistics applied.  

 

Regressor and Back-testing 
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 Once a macro is written, process takes less than an hour for the 
entire list of CUSIPs (We did this for 300 CUSIPs.) 

 Procedure can be learned in about 15 minutes via phone support, if 
all required extract files are available. 

 Regressor allows the aggregation across CUSIPs drawn from same 
collateral.  Performance on sub-portfolios can be assessed. 

 

Regressor and Back-testing 
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Why can AFT Claim Regressor Provides a Back-test”? 

 AFT Prepayment models are estimated using collateral data 

• Securities are small samples of the collateral. 

• Output in Regressor at CUSIP level is based on both 
overlapping historical periods and projected periods, depending 
on the length of history and when collateral model was 
estimated. 

o Over the historical data model period this is an “in-sample” back-
test. 

o When CPRs are projected beyond historical data period used for 
building models, the test is an “out-of-sample” back-test. 

 If the connectivity in the ALM system and AFT models has been 
validated, then the ALM model is not needed for back-testing AFT 
prepayment models. 
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Back testing Sample Output from Regressor 
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Dynamic Aggregator and Back testing 

 Dynamic Aggregator is applicable to portfolio loans 

• Similar output created as in Regressor 

o AFT prepayment models provide the basis for modeling.  
Discrete prepayment factors can be scaled to improve 
model fit. 

o Historical data used to fit model and model statistics can be 
created as part of the estimation process. 

o In-sample and out-of-sample model testing can be applied 
with similar statistics. 

o If AFT-ALM model link has been validated, then the process 
can substitute for back test using ALM model.   
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Findings from Dynamic Aggregator Projects 

 Dynamic Aggregator has coincidentally “solved” a classic data 
bottleneck in many banking institutions 

• IT departments now regularly archive historical data relevant 
for testing prepayment models 

• They are very efficient at providing raw data.   

• They are inefficient at “mapping” data   

o Internal resources for “research and analysis” are frequently low 
on a priority list 

o External projects where only  raw data is required appear not to 
face the same internal hurdles because they demand very few IT 
resources 
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Findings from Dynamic Aggregator  Projects 

 A part of prepayment model validation projects applicable to 
portfolio mortgages is obtaining and mapping data.  But this 
process is no longer a large cost.  

o Mapping costs have not been large.  Key variable is number of 
systems 

o Mapping rules typically remain constant over time, so annual 
updates become very cost effective 

 Once the data has been mapped into Dynamic Aggregator, the 
process for testing and is very cost-effective, particularly when the 
process is done annually as required by banking regulations 
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Testing Stochastic Rate Generators 

 In many banks stochastic rate generators are being utilized to 
measure value based IRR 

 

• Base case is calibrated to market instruments 

• There are known nuances and problems associated with this 

• How does a bank “validate” a stochastic rate model? 
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Testing Stochastic Rate Generators 

 Approach I 

• Obtain model documentation 

• Build a separate model independently 

• Perform double-blind tests and compare inputs and outputs  

 

 Issues with Approach I 

• Vendors may be unwilling to provide proprietary code 
documentation 

• Building a separate model can be very expensive, including its 
validation 

• Specialized coding/math expertise required to “build” a stochastic 
rate generator 
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Testing Stochastic Rate Generators 

 Approach II 

• Obtain a qualified stochastic rate generation system  

• Calibrate to the same set of market instruments 

• Compare inputs and outputs for tested samples   

 

 FSI:  A qualified stochastic rate generation system 
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Testing Stochastic Rate Generators 

 FSI is a fully specified two factor lattice & Monte-Carlo system 
designed as a portfolio management product with validation 
capabilities 

 

• Provides a basis for comfort or discomfort depending on the model 
results and how the model results are integrated with portfolio 
management decisions  

• Since it contains both single factor (BK) and two-factor processes, 
it provides a basis for understanding the sensitivity of the risk 
measure to the underlying process utilized 

• Helps improve calibration procedures and allows a look into the 
“black box” of stochastic rate generation capability 
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Testing Stochastic Rate Generators 

 Test Procedures 
 

• Compared stochastic output from a widely used ALM model with a 
stochastic generator 

o Compared three portfolios in two periods 

o MBS & CMO 

o Portfolio FRMs 

o Callable Bonds 

o Greeks are computed at the instrument level 

o Market values and market values under rate shocks can be computed 

o Market values changes compared over time at instrument level 

o Results used to refine and understand  calibration process and 
reasonableness of risk results   
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Callables: MV Sensitivity 
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Callables: MV Sensitivity Compared  
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Callables: MV Sensitivity Compared  

12/31 3/30 

Market value sensitivity measures for 

callable bond portfolio where very similar 

in both time periods 
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Callables: Duration & Convexity 

Red line represents parity 
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Duration Convexity 

Results indicated some non-random differences on 

individual securities.  Further investigation revealed pattern 

associated with “at the money” calls. Cross checks with 

market values showed sensitivity to calibration mechanics 
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Callables:  FSI 2 Factor vs. ALM Model:   12/31 to 3/31 

Red line represents parity 
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How does Market Value Change over Time? 
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FRMs:  MV Sensitivity 
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Prepayment models were identical 
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FRMs:    Duration & Convexity 

Red line represents parity 
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FRMs:  FSI (2 Factor) vs. ALM:   12/31 to 3/31 

Red line represents parity 
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FRMs where there are good market value indicators 

combined with the OAS calculations lead to similar results 
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CMOs & MBS: MV Sensitivity 
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CMOs & MBS: Duration & Convexity 

Red line represents parity 
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CMOs & MBS:  FSI (2 Factor) vs. ALM:   12/31 to 3/31 

Red line represents parity 

Four outliers are the same CUSIPs as in the prior graph 
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Yield Curve Distributions: Single Factor vs. Two Factor 
Stochastic Processes 
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Yield Curve Distributions: Single Factor vs. Two Factor 
Stochastic Processes 
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Yield Curve Distributions: Single Factor vs. Two Factor 
Stochastic Processes 
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FRMs:  MV Sensitivity: Single vs. 2 Factor 
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case even though distribution of yield 

curves is noticeable 
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Observations from Test 

 Stochastic models will frequently produce different 
measures of risk at the instrument level for instruments 
with embedded options 

 

• We believe – but it is difficult to confirm without access to 
source code – that this is largely due to differences in 
calibration procedures as well as differences in modeling 
methods.   

• With larger portfolios that include instruments with a wide 
variety of option structures, the differences in results will 
tend to cancel each other out if the overall levels of implied 
volatility used in the calibrations are similar.  
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Observations from Test 

 Validation tests of stochastic models using a qualified 
stochastic model, such as FSI, can: 

• Identify modeling errors, because large differences in 
results invite further investigation 

• Enhance understanding of the “black box” of ALM model 
calibration procedures, when calibrations aren’t “all that 
close” 

• Provide guidance for the product characteristics that are 
stochastic modeling technique sensitive 

 Validation tests of stochastic models lead to the 
following warning: 

 

 Beware of relying on a single stochastic model when 
measuring risk at the instrument level for instruments 
with embedded complex options  
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Observations from Test 

Tests of stochastic models can identify modeling errors, 
because large differences invite further investigation 

 

Word to the warning about using stochastic models for risk 
management involving individual transactions 

 

 

 
 

 


